Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 137
Filtrar
1.
J Agric Food Chem ; 72(10): 5247-5257, 2024 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-38425052

RESUMO

Bioactivity screening revealed that the antifungal activities of EtOAc extracts from coculture broths of Trametes versicolor SY630 with either Vanderbylia robiniophila SY341 or Ganoderma gibbosum SY1001 were significantly improved compared to that of monocultures. Activity-guided isolation led to the discovery of five aromatic compounds (1-5) from the coculture broth of T. versicolor SY630 and V. robiniophila SY341 and two sphingolipids (6 and 7) from the coculture broth of T. versicolor SY630 and G. gibbosum SY1001. Tramevandins A-C (1-3) and 17-ene-1-deoxyPS (6) are new compounds, while 1-deoxyPS (7) is a new natural product. Notably, compound 2 represents a novel scaffold, wherein the highly modified p-terphenyl bears a benzyl substituent. The absolute configurations of those new compounds were elucidated by X-ray diffraction, ECD calculations, and analysis of physicochemical constants. Compounds 1, 2, and 5-7 exhibited different degrees of antimicrobial activity, and the antifungal activities of compounds 6 and 7 against Candida albicans and Cryptococcus neoformans are comparable to those of fluconazole, nystatin, and sphingosine, respectively. Transcriptome analysis, propidium iodide staining, ergosterol quantification, and feeding assays showed that the isolated sphingolipids can extensively downregulate the late biosynthetic pathway of ergosterol in C. albicans, representing a promising mechanism to combat antibiotic-resistant fungi.


Assuntos
Agaricales , Antifúngicos , Antifúngicos/química , Trametes , Técnicas de Cocultura , Candida albicans , Ergosterol , Esfingolipídeos/metabolismo , Testes de Sensibilidade Microbiana
2.
Bioprocess Biosyst Eng ; 47(4): 475-482, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38480583

RESUMO

Use of white-rot fungi for enzyme-based bioremediation of wastewater is of high interest. These fungi produce considerable amounts of extracellular ligninolytic enzymes during solid-state fermentation on lignocellulosic materials such as straw and sawdust. We used pure sawdust colonized by Pleurotus ostreatus, Trametes versicolor, and Ganoderma lucidum for extraction of ligninolytic enzymes in aqueous suspension. Crude enzyme suspensions of the three fungi, with laccase activity range 12-43 U/L and manganese peroxidase activity range 5-55 U/L, were evaluated for degradation of 11 selected pharmaceuticals spiked at environmentally relevant concentrations. Sulfamethoxazole was removed significantly in all treatments. The crude enzyme suspension from P. ostreatus achieved degradation of wider range of pharmaceuticals when the enzyme activity was increased. Brief homogenization of the colonized sawdust was also observed to be favorable, resulting in significant reductions after a short exposure of 5 min. The highest reduction was observed for sulfamethoxazole which was reduced by 84% compared to an autoclaved control without enzyme activity and for trimethoprim which was reduced by 60%. The compounds metoprolol, lidocaine, and venlafaxine were reduced by approximately 30% compared to the control. Overall, this study confirmed the potential of low-cost lignocellulosic material as a substrate for production of enzymes from white-rot fungi. However, monitoring over time in bioreactors revealed a rapid decrease in enzymatic ligninolytic activity.


Assuntos
Pleurotus , Trametes , Lacase/química , Lignina/metabolismo , Fermentação , Sulfametoxazol/metabolismo , Preparações Farmacêuticas/metabolismo , Biodegradação Ambiental
3.
Environ Technol ; : 1-12, 2024 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-38522073

RESUMO

Microbial remediation of organically combined contaminated sites is currently facing technical challenges. White rot fungi possess broad-spectrum degradation capabilities, but most of the studies are conducted on polluted water bodies, and few research focus on the degradation of combined organically contaminated soils. This study aimed to investigate the physiological changes in Trametes versicolor to enhance its simultaneous degradation ability towards benzo(a)pyrene (BaP) and TPH. The results demonstrated that Trametes versicolor, when subjected to liquid fermentation, achieved an 88.08% degradation of individual BaP within 7 days. However, under the combined contamination conditions of BaP and TPH, the BaP degradation rate decreased to 69.25%, while the TPH degradation rate was only 16.95%. Furthermore, the degradation rate of BaP exhibited a significant correlation with the extracellular protein concentration and laccase activities. Conversely, the TPH degradation rate exhibited a significant and positive correlation with the intracellular protein concentration. Solid-state fermentation utilizing fungal agents proved to be the most effective method for removing BaP and TPH, yielding degradation rates of 56.16% and 15.73% respectively within 60 days. Overall, Trametes versicolor demonstrated a commendable capability for degrading combined PAHs-TPH pollutants, thereby providing theoretical insights and technical support for the remediation of organically combined contaminated sites.

4.
Sci Rep ; 14(1): 3796, 2024 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-38360911

RESUMO

Regarding different medical benefits of fungi, using the medical mushroom extracts as wound-healing agents is gaining popularity. This study, evaluated the wound healing characteristics of Trametes versicolor. Anti-oxidant activity addressed by employing the DPPH (2,2-diphenyl-1-picrylhydrazyl) assay resulting 53.7% inhibitory effect. Besides, for anti-microbial ability determination, the MIC (Minimum Inhibitory Concentration) of extract measured which Escherichia coli growth was inhibited at 1.1 mg/ml, and Staphylococcus aureus did not grow at 4.38 mg/ml of extract. The MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) method indicated dose dependence of the extract with 63 ± 3% and 28 ± 3% viability at 1250 µg/ml and 156.25 µg/ml of extract, which higher concentration caused higher cell viability. The outcome of gene expression analysis determined that overall expression of FGF2 (Fibroblast Growth Factor 2), IL-1ß (Interleukin-1ß), and TGF-ß1 (Transforming Growth Factor-ß1) was 4 times higher at 48 h than at 24 h in treated cells, suggesting a stimulating effect on cell growth. An in-vivo animal model suggested enhanced wound healing process after treatment with 0.01 g of extract. Furthermore, the number of fibroblasts, epidermal thickness, and collagen fiber was respectively 2, 3, and threefold higher in treated mice when compared to untreated mice. The treated wounds of mice showed 100% and 60% of untreated mice of healing within 14 days. The results of this research show promise for the fungus-based wound healing treatments, which may help with tissue regeneration and the healing of cutaneous wounds.


Assuntos
Polyporaceae , Trametes , Cicatrização , Camundongos , Animais , Pele/metabolismo , Polissacarídeos/metabolismo
5.
Heliyon ; 10(1): e23838, 2024 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-38192859

RESUMO

Fungal enzymes are effective in degrading various polymeric materials. In this study, we assessed the initial degradation of composites consisting of lignin-poly(lactic acid) (PLA) with both unmodified lignin (LIG) and oxypropylated lignin (oLIG) incorporated at 10 % and 40 % weight within the PLA matrix in a fungal environment. Trametes versicolor fungi were used, and the samples were treated only for eight weeks. Although there was no significant difference in weight loss, the degradation process impacted the chemical and thermal properties of the composites, as shown by Fourier transform infrared spectroscopy (FTIR) and Differential scanning calorimetry (DSC) analyses. After the degradation process, the carbonyl index values decreased for all composites and the hydroxyl index values increased for LIG/PLA and a reverse trend was observed for oLIG/PLA composites. The first heating scan from DSC results showed that the melting peak and the cold crystallization peak disappeared after the degradation process. Microscopic analysis revealed that LIG/PLA exhibited higher roughness than oLIG/PLA. Molecular docking simulations were carried out using guaiacylglycerol-ß-guaiacyl ether (GGE) and lactic acid (LA) as model compounds for lignin and PLA, respectively, with laccase (Lac) enzyme for Trametes versicolor. The docking results showed that GGE had the strongest binding interaction and affinity with Lac than lactic acid and oxypropylated GGE. The oxypropylated GGE formed a shorter hydrogen bonding with the Lac enzyme than GGE and LA. The trend associated with the degradation of composites from experimental and molecular docking findings was consistent. This combined approach provided insights into the degradation process using fungi and had the potential to be applied to different polymeric composites.

6.
Molecules ; 28(23)2023 Dec 04.
Artigo em Inglês | MEDLINE | ID: mdl-38067650

RESUMO

Due to the wide applications of silver nanoparticles (AgNPs), research on their ecological synthesis has been extensive in recent years. In our study, biogenic silver nanoparticles were synthesized extracellularly using the white rot fungus Trametes versicolor via two cultivation methods: static and shaking. The cell filtrate of the fungus was used as a reducing agent in the process of nanoparticle synthesis. Characterization of the obtained nanoparticles was carried out using UV-VIS spectroscopy and scanning electron microscopy. The biosynthesized nanoparticles have antimicrobial potential against pathogenic bacteria, particularly in Gram-negative strains. The bactericidal effect was obtained for E. coli at a concentration of 7 µg/mL. The use of higher concentrations of compounds was necessary for Gram-positive bacteria. Taking into account the problem of the risk of cytotoxicity of AgNPs, combined therapy using a phytochemical was used for the first time, which was aimed at reducing the doses of nanoparticles. The most representative synergistic effect was observed in the treatment of 5 µg/mL silver nanoparticles in combination with 15 µg/mL ursolic acid against E. coli and P. aeruginosa with a bactericidal effect. Moreover, the coadministration of nanoparticles considerably reduced the growth of both Staphylococcus strains, with a bactericidal effect against S. aureus. The viability test confirmed the strong synergistic effect of both tested compounds. Silver nanoparticles synthesized using the T. versicolor showed excellent antibacterial potential, which opens perspectives for future investigations concerning the use of the nanoparticles as antimicrobials in the areas of health.


Assuntos
Anti-Infecciosos , Nanopartículas Metálicas , Prata/farmacologia , Prata/química , Nanopartículas Metálicas/química , Staphylococcus aureus , Escherichia coli , Trametes , Antibacterianos/farmacologia , Antibacterianos/química , Anti-Infecciosos/farmacologia , Testes de Sensibilidade Microbiana
7.
Food Chem X ; 20: 100969, 2023 Dec 30.
Artigo em Inglês | MEDLINE | ID: mdl-38144807

RESUMO

Trametes versicolor can produce aromatic flavor in growth and development, widely used in food fermentation. This study used a One-Factor-at-a-Time (OFAT) test and response surface analysis to study the optimum fermentation parameters of Rosa roxburghii tratt and coix seed yogurt by Trametes versicolor. The best fermentation process is as follows: skim milk powder 17 %, sucrose content 4 %, Rosa roxburghii tratt and coix seed liquid 36 %, fermentation temperature 39 °C, inoculum 2 %, strain ratio 2:1:1(LB12: BLH1: Q-1), fermentation time 9.5 h. Under this fermentation process, the sensory score was 82.11, the contents of vitamin C, GABA, and total live bacteria in this yogurt were 13.89, 2.58, and 1.02 times higher than in common yogurt. Correlation analyses showed a significant contribution of the leavening agent to the GABA content of yogurt. This study provides a foundation for producing Rosa roxburghii tratt and coix seed yogurt with high sensory and nutritional value.

8.
J Vet Res ; 67(2): 209-218, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37786431

RESUMO

Introduction: Bioactive proteins and peptides generated from fruit, vegetables, meat or fish have great potential as functional food or substitutes for antibiotics. In recent years it has also been demonstrated that the fungus kingdom could be a source of these compounds. The study investigated the bioactivity of an extract of the lignicolous fungus Trametes versicolor and its hydrolysate. Material and Methods: The fungus was collected in a mixed forest in October, extracted and hydrolysed. To inspect the protein and peptide profiles before and after hydrolysis, matrix-assisted laser desorption/ionisation-time-of-flight mass spectrometric analysis was performed. To evaluate the antioxidant properties of the preparations, 2,2-diphenyl-1-picrylhydrazyl (DPPH•) and 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid (ABTS•+) radical scavenging assays were used. The activity of the fungus extract and hydrolysate against Aeromonas veronii, Bacillus cereus, Enterococcus faecalis, Enterococcus faecium, Escherichia coli, Klebsiella pneumoniae, Pseudomonas aeruginosa, Salmonella Typhimurium, Staphylococcus aureus, Staphylococcus epidermidis, Streptococcus agalactiae, Streptococcus dysgalactiae, and Streptococcus uberis was determined by the minimum inhibitory concentration and minimum bactericidal concentration values. Results: The extract and its hydrolysate showed almost 100% ABTS•+ and DPPH• radical scavenging with a low half maximal inhibitory concentration. The water extract and hydrolysate of T. versicolor exhibited antimicrobial activity against two S. aureus strains, E. coli, P. aeruginosa and Salmonella Typhimurium. Conclusion: These results provide compelling evidence that the analysed fungus extract and its hydrolysate hold promise with their antibacterial and antioxidant properties.

9.
Front Bioeng Biotechnol ; 11: 1264135, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37811380

RESUMO

A Trametes versicolor isolate from the Changbai Mountain showed promising activity in degrading benzo[a]pyrene (BaP), which is a high molecular weight (HMW) polycyclic aromatic hydrocarbon (PAH) compound. It was hypothesized that the T. versicolor isolate encode BaP-degrading enzymes, among which laccase is mostly sought after due to significant commercial potential. Genome of the T. versicolor isolate was sequenced and assembled, and seven laccase homologues were identified (TvLac1-7) as candidate genes potentially contributing to BaP degradation. In order to further identify the BaP responsive laccases, time-course transcriptomic and proteomic analyses were conducted in parallel on the T. versicolor isolate upon BaP treatment. Homologous laccases showed distinct expression patterns. Most strikingly, TvLac5 was rapidly induced in the secreted proteomes (secretomes), while TvLac2 was repressed. Recombinant laccase expression and biochemical characterization further showed corresponding enzymatic activity profiles, where TvLac5 was 21-fold more effective in BaP degradation compared to TvLac2. Moreover, TvLac5 also showed 3.6-fold higher BaP degrading activity compared to a commercial laccase product of T. versicolor origin. Therefore, TvLac5 was concluded to be a BaP-responsive enzyme from T. versicolor showing effective BaP degradation activity.

10.
Front Fungal Biol ; 4: 1201889, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37746127

RESUMO

Biohydrogen is mainly produced by anaerobic bacteria, anaerobic fungi, and algae under anaerobic conditions. In higher eukaryotes, it is thought that molecular hydrogen (H2) functions as a signaling molecule for physiological processes such as stress responses. Here, it is demonstrated that white-rot fungi produce H2 during wood decay. The white-rot fungus Trametes versicolor produces H2 from wood under aerobic conditions, and H2 production is completely suppressed under hypoxic conditions. Additionally, oxalate and formate supplementation of the wood culture increased the level of H2 evolution. RNA-seq analyses revealed that T. versicolor oxalate production from the TCA/glyoxylate cycle was down-regulated, and conversely, genes encoding oxalate and formate metabolism enzymes were up-regulated. Although the involvement in H2 production of a gene annotated as an iron hydrogenase was uncertain, the results of organic acid supplementation, gene expression, and self-recombination experiments strongly suggest that formate metabolism plays a role in the mechanism of H2 production by this fungus. It is expected that this novel finding of aerobic H2 production from wood biomass by a white-rot fungus will open new fields in biohydrogen research.

11.
Polymers (Basel) ; 15(18)2023 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-37765518

RESUMO

Wood plastic composite (WPC) usage and demand have increased because of its interesting chemical and mechanical properties compared to other plastic materials. However, there is a possibility of structural and mechanical changes to the material when exposed to the external environment; most research on wood plastic is performed on the material with elevated fiber content (40-70%). Therefore, more research needs to be performed regarding these issues, especially when the fiber content of the WPC is low. In this study, composite materials composed of high-density polyethylene (HDPE) reinforced with yellow birch fibers (20 and 30%) were made by injection molding. The fibers were treated with dissolved zinc oxide (ZnO) powder in sodium oxide (NaOH) solution, and the fabricated material was exposed to fungal rot. ZnO treatment in this case is different from most studies because ZnO nanoparticles are usually employed. The main reason was to obtain better fixation of ZnO on the fibers. The mechanical properties of the composites were assessed by the tensile and Izod impact tests. The impact energies of the samples fabricated with ZnO-treated fibers and exposed to Gloephyllum trabeum and Trametes versicolor decreased, when compared to samples fabricated with ZnO-nontreated fibers. The mechanical properties of the samples composed of ZnO-treated fibers and exposed to rot decreased, which were reported by a decreased Young's modulus and impact energies. The usage of ZnO treatment prevented mycelium proliferation, which was nonexistent on the samples. It has been noted that the decrease in mechanical properties of the treated samples was because of the action of NaOH used to dissolve the ZnO powder.

12.
Braz J Microbiol ; 54(3): 1565-1572, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37572179

RESUMO

Laccases are appealing biocatalysts for various industrial utilizations. The fungus Trametes versicolor (L.: Fr.) Pilát causes white rot in wood and has been identified as an important fungal laccase producer. To investigate laccase production and activity in T. versicolor, the native isolate was collected from the host (Quercus castaneifolia) in the forests of Guilan province, northern Iran, and then purified and identified using the molecular marker. Its ability to produce laccase enzyme in the presence of different plant substrates including sawdust and wood chips of oak, poplar, and pine was evaluated. Also, the effect of copper as an enzyme inducer was investigated in vitro. The results showed that adding the wood to the culture medium increased laccase production, and among these, oak sawdust had the greatest effect, a 1.7-fold increase from that in the control (4.8 u/l vs. 2.8 u/l). Also, the enzyme extraction time effect on the optimal recovery yield showed that the 5-h enzyme extraction cycle resulted in the highest yield of the enzyme (18.97 u/l). Moreover, adding different concentrations of copper to the fungal culture medium increased the production of laccase, and the highest amount of enzyme (92.04 u/l) was obtained with 3.5 mM of CuSO4 along with oak sawdust. Based on the results, the addition of host wood sawdust ("oak" in this work) and copper particles together stimulates the fungal growth and the laccase production during submerged cultivation of T. versicolor. Therefore, it would be a safe and cheap strategy for the commercial production of laccase by filamentous fungi.


Assuntos
Lacase , Polyporaceae , Lacase/química , Trametes/genética , Cobre
13.
Environ Res ; 237(Pt 1): 116920, 2023 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-37597828

RESUMO

In this study, the impact of gold nanoparticles (AuNPs) on the structure and activity of laccase from Trametes versicolor (Lc) was described. Fluorescence experiments revealed that AuNPs efficiently quench Lc's tryptophan fluorescence by a static and dynamic process. By using differential scanning microcalorimetry and circular dichroism spectroscopy, it was determined how the concentration of nanoparticles and the composition of the medium affected the secondary structure of Lc. The data revealed that upon binding with AuNPs, conformational changes take place mainly in presence of high amounts of nanoparticles. The complex kinetic analysis unveiled the Lc activity enhancement at low concentrations of AuNPs as opposed to the concentrated regime, where it can be reduced by up to 55%. The Michaelis-Menten tests highlighted that the activity of the biocatalyst is closely related to the concentration of AuNPs, while the Selwyn analysis demonstrated that even in a concentrated regime of Lc it is not deactivated regardless of the amount of AuNPs added. The thermal parameters improved by twofold in the presence of low AuNPs concentration, whereas the activation energy increased with AuNPs content, implying that not all collisions are beneficial to the enzyme structure. The effect of AuNPs on the decomposition of a recalcitrant dye (naphthol green B, NG) by Lc was also evaluated, and the Michaelis-Menten model revealed that only the high AuNPs content influenced negatively the Lc activity. The isothermal titration calorimetry revealed that hydrogen bonds are the main intermolecular forces between Lc and AuNPs, while electrostatic interactions are responsible for NG adsorption to AuNPs. The results of the docking analysis show the binding of NG near the copper T1 site of Lc with hydrogen bonds, electrostatic and hydrophobic interactions. The findings of this work provide important knowledge for laccase-based bio-nanoconjugates and their use in the field of environmental remediation.

14.
Environ Sci Technol ; 57(32): 11977-11987, 2023 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-37526086

RESUMO

While carbon dots (CDs) have the potential to support the agricultural revolution, it remains obscure about their environmental fate and bioavailability by plants. Fungal laccase-mediated biotransformation of carbon nanomaterials has received little attention despite its known capacity to eliminate recalcitrant contaminants. Herein, we presented the initial investigation into the transformation of CDs by fungal laccase. The degradation rates of CDs were determined to be first-order in both substrate and enzyme. Computational docking studies showed that CDs preferentially bonded to the pocket of laccase on the basal plane rather than the edge through hydrogen bonds and hydrophobic interactions. Electrospray ionization-Fourier transform-ion cyclotron resonance mass spectrometry (ESI-FT-ICR MS) and other characterizations revealed that the phenolic/amino lignins and tannins portions in CDs are susceptible to laccase transformation, resulting in graphitic structure damage and smaller-sized fragments. By using the 13C stable isotope labeling technique, we quantified the uptake and translocation of 13C-CDs by mung bean plants. 13C-CDs (10 mg L-1) accumulated in the root, stem, and leaf were estimated to be 291, 239, and 152 µg g-1 at day 5. We also evidenced that laccase treatment alters the particle size and surface chemistry of CDs, which could facilitate the uptake of CDs by plants and reduce their nanotoxicity to plants.


Assuntos
Carbono , Lacase , Lacase/química , Lacase/metabolismo , Biodegradação Ambiental , Espectrometria de Massas , Biotransformação , Trametes/metabolismo
15.
Pharmaceuticals (Basel) ; 16(6)2023 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-37375735

RESUMO

The present study aimed to examine the biological activity and cardioprotective potential of Trametes versicolor heteropolysaccharides (TVH) in a rat model of metabolic syndrome (MetS). This study included 40 Wistar rats divided into 5 groups: CTRL-healthy non-treated rats; MetS-non-treated rats; and H-TV, M-TV and L-TV-rats with MetS treated with either 300, 200 or 100 mg/kg TVH per os for 4 weeks. After finishing the treatment, we conducted an oral glucose tolerance test (OGTT), hemodynamic measurements and the animals were sacrificed, hearts isolated and subjected to the Langendorff technique. Blood samples were used for the determination of oxidative stress parameters, lipid status and insulin levels. We showed that α-amylase inhibition was not the mode of TVH antidiabetic action, while TVH showed a moderate inhibition of pathogenic microorganisms' growth (MIC 8.00 mg·mL-1; MBC/MFC 16.00 mg·mL-1). H-TV and M-TV significantly reduced the level of prooxidants (O2-, H2O2, TBARS; p < 0.05), increased antioxidants activity (SOD, CAT, GSH; p < 0.05), reduced blood pressure (p < 0.05), improved glucose homeostasis in the OGTT test (p < 0.05), and ejection fraction (p < 0.05) and cardiac contractility (p < 0.05) compared to MetS (p < 0.05). Moreover, TVH treatment normalized the lipid status and decreased insulin levels compared to MetS rats (p < 0.05). The obtained results demonstrated that the TVH may be considered a useful agent for cardioprotection in MetS conditions.

16.
J Fungi (Basel) ; 9(5)2023 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-37233247

RESUMO

Fomitiporia mediterranea M. Fischer (Fmed) is a white-rot wood-decaying fungus associated with one of the most important and challenging diseases in vineyards: Esca. To relieve microbial degradation, woody plants, including Vitis vinifera, use structural and chemical weapons. Lignin is the most recalcitrant of the wood cell wall structural compounds and contributes to wood durability. Extractives are constitutive or de novo synthesized specialized metabolites that are not covalently bound to wood cell walls and are often associated with antimicrobial properties. Fmed is able to mineralize lignin and detoxify toxic wood extractives, thanks to enzymes such as laccases and peroxidases. Grapevine wood's chemical composition could be involved in Fmed's adaptation to its substrate. This study aimed at deciphering if Fmed uses specific mechanisms to degrade grapevine wood structure and extractives. Three different wood species, grapevine, beech, and oak. were exposed to fungal degradation by two Fmed strains. The well-studied white-rot fungus Trametes versicolor (Tver) was used as a comparison model. A simultaneous degradation pattern was shown for Fmed in the three degraded wood species. Wood mass loss after 7 months for the two fungal species was the highest with low-density oak wood. For the latter wood species, radical differences in initial wood density were observed. No differences between grapevine or beech wood degradation rates were observed after degradation by Fmed or by Tver. Contrary to the Tver secretome, one manganese peroxidase isoform (MnP2l, jgi protein ID 145801) was the most abundant in the Fmed secretome on grapevine wood only. Non-targeted metabolomic analysis was conducted on wood and mycelium samples, using metabolomic networking and public databases (GNPS, MS-DIAL) for metabolite annotations. Chemical differences between non-degraded and degraded woods, and between mycelia grown on different wood species, are discussed. This study highlights Fmed physiological, proteomic and metabolomic traits during wood degradation and thus contributes to a better understanding of its wood degradation mechanisms.

17.
Front Bioeng Biotechnol ; 11: 1176352, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37180036

RESUMO

A highly efficient strategy using Copper-Glycyl-L-Histidyl-L-Lysine (GHK-Cu) as a novel inducer was developed to enhance laccase production by Trametes versicolor. After medium optimization, laccase activity increased by 12.77-fold compared to that without GHK-Cu. The laccase production of 1113.8 U L-1 was obtained by scaling-up culture in 5-L stirring tank. The laccase production induced by CuSO4 was poorer than that of GHK-Cu at the same mole concentration. GHK-Cu could increase the permeability of cell membrane with less damage, and it facilitated the adsorption, accumulation, and utilization of copper by fungal cells, which was beneficial for laccase synthesis. GHK-Cu induced better expression of laccase related genes than that of CuSO4, resulting in higher laccase production. This study provided a useful method for induced production of laccase by applying GHK chelated metal ion as a non-toxic inducer, which reduced the safety risk of laccase broth and provided the potential application of crude laccase in food industry. In addition, GHK can be used as the carrier of different metal ions to enhance the production of other metalloenzymes.

18.
Materials (Basel) ; 16(9)2023 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-37176430

RESUMO

Addressing the impacts of climate change and global warming has become an urgent priority for the planet's well-being. In recent decades the great potential of fungal-based products with characteristics equal to, or even outperforming, classic petroleum-derived products has been acknowledged. These new materials present the added advantage of having a reduced carbon footprint, less environmental impact and contributing to the shift away from a fossil-based economy. This study focused on the production of insulation panels using fungal mycelium and lignocellulosic materials as substrates. The process was optimized, starting with the selection of Trametes versicolor, Pleurotus ostreatus, P. eryngii, Ganoderma carnosum and Fomitopsis pinicola isolates, followed by the evaluation of three grain spawn substrates (millet, wheat and a 1:1 mix of millet and wheat grains) for mycelium propagation, and finishing with the production of various mycelium-based composites using five wood by-products and waste materials (pine sawdust, oak shavings, tree of heaven wood chips, wheat straw and shredded beech wood). The obtained biomaterials were characterized for internal structure by X-ray micro-CT, thermal transmittance using a thermoflowmeter and moisture absorption. The results showed that using a wheat and millet 1:1 (w/w) mix is the best option for spawn production regardless of the fungal isolate. In addition, the performance of the final composites was influenced both by the fungal isolate and the substrate used, with the latter having a stronger effect on the measured properties. The study shows that the most promising sustainable insulating biomaterial was created using T. versicolor grown on wheat straw.

19.
Environ Sci Pollut Res Int ; 30(31): 77193-77209, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37249765

RESUMO

Bioremediation of pharmaceuticals has gained large research efforts, but there is still a need to improve the performance of bioremediation systems by selecting effective organisms. In this study, we characterized the capability to remove clarithromycin (CLA) and diclofenac (DCF) by the bacterium Streptomyces rochei, and the fungi Phanerochaete chrysosporium and Trametes versicolor. The macrolide antibiotic CLA and the non-steroid anti-inflammatory DCF were selected because these are two of the most frequently detected drugs in water bodies. Growth and content of the PhCs and a DCF metabolite (MET) by the energy crop Arundo donax L. were also evaluated under hydroponic conditions. The removal rate (RR) by S. rochei increased from 24 to 40% at 10 and 100 µg CLA L-1, respectively, averaged over incubation times. At 144 h, the RR by P. chrysosporium was 84%, while by T. versicolor was 70 and 45% at 10 and 100 CLA µg L-1. The RR by S. rochei did not exceed 30% at 1 mg DCF L-1 and reached 60% at 10 mg DCF L-1, whereas approached 95% and 63% by P. chrysosporium and T. versicolor, respectively, at both doses. Root biomass and length of A. donax were strongly affected at 100 µg CLA L-1. CLA concentration in roots and shoots increased with the increase of the dose and translocation factor (TF) was about 1. DCF severely affected both shoot fresh weight and root length at the highest dose and concentration in roots and shoots increased with the increase of the dose. DCF concentrations were 16-19 times higher in roots than in shoots, and TF was about 0.1. MET was detected only in roots and its proportion over the parent compound decreased with the increase of the DCF dose. This study highlights the potential contribution of A. donax and the tested microbial inoculants for improving the effectiveness of bioremediation systems for CLA and DCF removal.


Assuntos
Diclofenaco , Águas Residuárias , Diclofenaco/metabolismo , Claritromicina/metabolismo , Biodegradação Ambiental , Trametes/metabolismo , Poaceae/metabolismo
20.
PeerJ ; 11: e14541, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36923506

RESUMO

Introduction: Wood is a natural resource used for construction and the manufacture of many products. This material is exposed to damage due to biotic and abiotic factors. An important biotic factor is wood-degrading fungi that generate large economic losses. The objectives of this study were to determine the effect of xylophagous fungi (Coniophora puteana and Trametes versicolor) on the natural durability of six timber species in southern Durango, Mexico, and to establish differences between fungal effects on each tree species. Materials and Methods: Samples of Pinus durangensis, P. cooperi, P. strobiformis, Juniperus deppeana, Quercus sideroxyla, and Alnus acuminata were exposed to fungi for 4 months under laboratory conditions according to European Standard EN350-1. Samples of Fagus sylvatica were used as control. Durability was determined as the percentage of wood mass loss for each species. Welch ANOVA tests were performed to establish differences among tree species. Welch t-tests were used to prove loss mass differences between fungi for each tree species. Results: The most resistant species to C. puteana were P. durangensis, J. deppeana, P. cooperi and P. strobiformis, showing mean mass losses lower than 8.08%. The most resistant species to T. versicolor were J. deppeana, P. strobiformis and P. durangensis (mean mass losses lower than 7.39%). Pinus strobiformis and Q. sideroxyla were more susceptible to C. puteana effect; in contrast, P. durangensis and P. cooperi showed more damage due to T. versicolor degradation. Conclusions: Woods of P. durangensis, P. cooperi, P. strobiformis and Juniperus deppeana are well adapted to infection by these xylophagous fungi and are therefore highly recommended for commercial use in southern Durango, Mexico.


Assuntos
Fagus , Pinus , Trametes/metabolismo , México , Madeira/metabolismo , Pinus/metabolismo , Fagus/microbiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...